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1- Introduction

The main prerogative of the present paper is to investigate the hydromagnetic stability of a streaming
compressible hollow cylinder endowed with surface tension and acting upon its inertia and the electromagnetic
forces. The stability and oscillation of full liquid jet endowed with surface tension or/and acted by
electromagnetic force have been documented in several reported works based on the linear perturbation
technique of small disturbance. See Rayleigh (1945) ,Lin (1976), Drazin and Reid (1980), Chandrasekhar
(1981), Avital (1995) and Radwan (2004). The instability of hollow jet (' gas cylinder penetrated in a liquid )
acted by surface tension only is envised and studied for first time in the scientific province by Chandrasekhar (
for axisymmetric mode (m=0) , m is the azimuthally wave number)only . Also Drazin and Reid (1980) and
Kendall (1986) gave an idea about such problem to be done mathematically for axisymmetric and non-
axisymmetric.In such work Channdrasekhar (1981), the inertia of the liquid is considered to be predominate
over that of the gas and consequently the gas inertia force is neglected. Cheng (1985) elaborated the capillary
stability of a streaming gas jet in a liquid, taking into account that the inertia of both incompressible gas and
liquid. However one has to infer here that the result given longitudinal wavenumber and Ry is the cylinder
radius in the equilibrium state) must be in the numerator as it is clear from Eq.(3) in Cheng (19 by Cheng

(1985), in Egs. (4) and (5), are incorrect in the third term. In fact the term (l— m? — szj),(where m is the

azimuthally wavenumber, k is the 185) . See also equations (2.45),(2.46) and (2.48) in the present work and
Drazin & Reid's result (1980) p.16 and also Chandrasekhar's dispersion relation (1981) p.538 and p.540 ( Eqgs.
(147) and (155) there). Radwan (1991) has examined the effect of a magnetic field on the capillary instability of
an incompressible inviscid hollow jet. The stability of different cylindrical models under the action of self
gravitating force in addition to other forces has been elaborated by Radwan and Hasan (2008) and (2009). They
(2008) studied the gravitational stability of a fluid cylinder under transverse time-dependent electric field for
axisymmetric perturbations. Hasan (2011) has discussed the stability of oscillating streaming fluid cylinder
subject to combined effect of the capillary, self gravitating and electrodynamic forces for all axisymmetric and
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non axisymmetric perturbation modes. He (2012) studied the magnetodynamic stability of a fluid jet pervaded
by transverse varying magnetic field while its surrounding tenuous medium is penetrated by uniform magnetic
field.

Here we extend the latter works by considering the liquid is compressible, which means that the
velocity is not solenoid anymore and that the density is not constant.

2- Formulation of the Problem

We consider a hollow cylinder which is a gas cylinder pervaded into a liquid. In the initial state the gas cylinder
is of cross section of radius Ry . The liquid is assumed to be non-viscous, perfectly conducting and
compressible (i.e. its density p will not be constant) and pervaded by the uniform magnetic field

H,= (0,0, HO). The gas is pervaded by the uniform magnetic field Hg = (O,O,aHO) where Hy is the
intensity of the magnetic field in the unperturbed state, while o is parameter satisfying certain restrictions. The

components of the vector fields Ho and Hy® are considered along the cylindrical coordinates (r, Q, z) system

with the z-axis coinciding with the axis of the hollow cylinder model. Each of the gas and liquid is considered
with constant magnetic permeability.
3 - Basic_Equations

The basic equations concerning MHD study of compressible fluid

p(%+ (u-V)u] =-VP+u(VAH)AH )
a—erV-(pu):o @)
ot -
oo |- ) ®
P=Kp’ 4
VH =0 (5)
oH
= VAlUAH)=(H-VU-H{V-u)-(u-V)H (6)
In the gas region
V-H™ =0 ()
VAH®™ =0 (8)
Along the gas-liquid interface, the surface pressure due to the capillary force is given by
P, =S(V.N) 9)
with
VN=r"+r" (10)

Here u and P are the liquid velocity and kinetic pressure, H is the magnetic field intensity, T is the temperature
of the liquid, C, is the specific heat of constant volume, y(= (C,/C,)) is the ratio of specific heats of the liquid, S
is the surface tension coefficient, while r; and r, are the principle radii of curvature. N is, a unit vector
outward normal to the performed interface f(r,0, z, t) = 0, given by

N =Vf(r,0,z,t)/ [Vf(r,0,zt) (11)

Equation (1) is the equation of motion of the liquid, equation (2) is the continuity equation of the liquid in the
case of the compressible fluid, equation (3) is the conservation of energy equation, equation (4) is the
polytrophic equation of state valid only for compressible fluids, equation (5) is Gauss's law of the magnetic field
and this equation is identically satisfied, equation (6) is the evaluation equation of the magnetic field in the
liquid region, equation (7) is Gauss's law of the magnetic field in the gas region, and equation (8) is the equation
of conservation of flux in gas region where there is no current.

4 - Unperturbed State
In the unperturbed state, we consider the liquid streams with the velocity
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Ug = (0, 0, U). The unperturbed state is studied and consequently the kinetic pressure of the liquid is given by

S HZ
P =—— + 20 (o2 —1)+ P (12)
RZ 2
In the absence of the capillary force effect (S = 0), the pressure Py is positive as long as
(o> 1). However the model will collapse as (o = 1) if Py’ > (S/ Rg ) Also if we neglect the surface tension

effect, so P, must be greater than (S/ ROZ) to avoid the collapsing of the model.

5 - Linearization
We assume a small disturbance along the gas-liquid interface, then for small departure from the
unperturbed state, every physical quantity x(r,0, z, t) may be expressed, see Radwan (2004) and (1996) as

2(r,0,2,t)= 7,(N) +&(t)x(r,0,2) (13)
where the subscript zero characterizes quantities in the initial state while those with the index unity are their
increments. Here y stands for p, P, u, H, H**, N and the radical distance of the gas cylinder. The amplitude of
the perturbation &(t) is given by
&(t) = &, exp(ot) (14)
where o is the growth rate of instability or rather the oscillation frequency if o( = i @ with i = (-1)* the
imaginary factor) is imaginary.

Consider an axisymmetric sinusoidal propagating wave along the gas-liquid interface. For a single Fourier
term and based on the linearized perturbation technique, the perturbed radial distance of the gas cylinder is
being

r=R,+¢&R, (15)
with
R, = exp(ikz + ot) (16)

The second term in the right side of equation (2.15) represents the elevation of the surface wave measured from
the unperturbed position with k is the longitudinal wave number.
Based on the foregoing expansions, the relevant perturbation equations are given by:

ou
L (U V), — - (H, - V)H, = -V, an

ot Po
oH, = (ﬂo 'V)Ql - (Hl 'v)ﬂo - (Ho 'V)ﬂl -H, (V'ul)"' gl(v ‘Hy )_ (18)
V-H,=0 (19)
P = azpl (20)
0
PV (pyu, + pug) =0 1)
V-H” =0 (22)
VAH® =0 (23)
and

S 0°R

Ps = R_Oz[Rl + Rg azzlJ (24)
where
po Il =R +§(ﬂﬂ)1 (25)

is the total magnetohydrodynamic pressure which is the sum of the perturbed kinetic pressure P, of the liquid
and the magnetodynamic pressure (u/2) (H.H)1, due to electromagnetic acting force. While a is the speed of
sound in the compressible liquid defined by:

a= (7’Po/ Po )% ()
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By combining equations (2.20) and (2.21), we get
(o +ikU )P, = —pea*(V-u,)
In view of the time-space dependence and according to the linear perturbation technique used for solving

the stability problems of cylindrical models (cf. Chandrasekhar (1980)and Radwan (2005)), every fluctuating
quantity 1 (r,0,z, t) in the axisymmetric perturbation could be expressed as

1(rp.2,t)= gy 71 (r)exp(ot + ikz) 27)

By the use of the expansion (27), the perturbed equations (17)-(24) are solved and the perturbed quantities uy,
P1, p1, Hi, H:% T are identified. These variables contain constants due to integration. Such constants may be
determined upon applying appropriate boundary conditions.

Under the present circumstances, these boundary conditions are given as follows.
(i) The normal component u, of the velocity vector u must be compatible with the velocity of the perturbed gas-
liquid boundary across the interface (15) at r = R,.
This condition yields

OR
u, = 5_'[1 + (Ho 'V)Rl (28)

(ii) The jump of the normal component of the magnetic field vanishes across the liquid-gas interface at r = Rq.
This condition reads

N.<H>=0 (29)
Up to first order, the condition (29) gives
No. <Hi >+N; . <Ho>=0 (30)
with
<ﬂ> — ﬂgas _ﬂllqmd (31)
NO = (1!010) (32)
N, =(0,0,~ik Jexp(ot + ikz) (33)
(iii) The balance of the normal component of the total stress tensor across the gas-liquid interface at (r = R,) is
being
oPy  u d(Hy-Hy) K| (g o e oH - H™)
OH +R_0+_R#:PS+_ Hg _Hg +R -0 220
S R o+ | B ) 4R, or
(34)
Consequently, after lengthy calculations, we obtain the following.
The total MHD pressure
1 S L A2
I, =————\(c+ikU )" + Q3% K, (mr)R (35)
R ol
The magnetic field in the liquid region
ikH H
Hy=—2—-u,+—Pe, (36)
(c+ikU)™  pa? =
The velocity components of the liquid
Uy =— (‘_j+ |k2U) ; o1l (37)
(c+iku) +Q2) or
u, =0 (38)
ik(o+ kU ) 1+ A0 (o +iku ¥ + pk2H2]’ 39
u, =Ko +1 _+§a2 o+l + U 0 (39)
The magnetic field in the gas region
iaH
H® =—2V(I,(kr)R 40
B = (1o (kn)R,) (40)

The curvature pressure along the gas-liquid interface
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S
P, =¥(1— xR, (41)
0
with
772 =k? +M (42)
a’s
2 Y
E=1+ /lH_o _ (U‘HL(U) k2 (43)
plo+ikU) a

Here x (= k R,) is the ordinary longitudinal dimensionless wave number, y(= 1 R,) the compressible
longitudinal dimensionless wave number (where n— kas a — ), |y and K, are the modified Bessel functions

of the first and second kind of order zero, and €2, = (,uH Ozkz/p0 )}/Z is Alfven wave frequency defined in

terms of Hy.
By resorting to the foregoing solutions (12) and (35)—(43) of the basic equations in the unperturbed and
perturbed states for compressibility condition (2.34), the following stability criterion is obtained

(o4 kKUY = 4 {_szzxylo(x)Ks(y)}_ s (1_X2{yr<s(y)} )

PoRs L (OK(Y) | PoRs Ko(Y)

6 - Discussion _and Limiting Cases

The dispersion relation (44) is valid for discussing the MHD stability of compressible hollow jet endowed
with surface tension and acted by inertia and electromagnetic forces. This relation related the growth rate ¢ with
the wave numbers x and y; the modified Bessel functions I, and Kq of the first and second kinds of order zero
and their derivatives, the parameters po, Ro, Ho, 1 and S ofithe problem and with the fundamental quantities

1 1
(pRj/ /UHOZ)E and (po Rf/ S)E as a unit of time.
The relation (44) is a general relation from which we may recover other reported works as limiting cases.

For an ideal hollow jet endowed with surface tension (H, =0and a — o) at rest initially (U=0), we
have

o’ = Ss (1_X2)XK11(X)’ KS(X)=—K1(X) (45)
PoRS K (%)
This relation has been given by Chandrasekhar (1981) for axisymmetric perturbation
If we assume that the fluid is incompressible (a — o) and initially the fluid is at rest
(U = 0), the dispersion relation (44), yields

2
o2 = S ' (1_ Xz{XK1 (X)}+ /UHoz {_ X2 — 22 1, (XK, (X)} (46)
poRo KO(X) poRo Il (X)KO(X)
This is the magnetohydrodynamic dispersion relation of a hollow jet subjected by the capillary and MHD forces
derived and documented by Radwan (1994).
The magnetodynamic dispersion relation of a streaming compressible hollow jet may obtained from
equation (44), by just supposing (S = 0), in the form

G gHE L, (0K (Y)
(c+ikUY = 2{ X +a Xy—lg(x)Ko(y)} 7)

oo
The dispersion relation of a streaming compressible hollow jet subjected by the capillary force could be
obtained from (44) as (H,=0), in the form

(o +ikU)* =— S - (- xz{—y&(y)} (48)
po Ro Ko (y)

which is valid for all short and long wavelength.

7- Discussion and Results
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In order to investigate the instability and oscillation of the present model we have to write down about the
characteristic and behaviour of the modified Bessel functions.
The recurrence relations of the modified Bessel functions(cf. Abramowitz and Stegun (1970)) are given by

2F, () =F,,(X) +F,,(x) (49)

where F.(X) stands for I, (x) and—K_ (X) while Fu(x) stands for 1n(x) and Km(x). By the use of

relations (2.49) and the fact that 1,,(x) is positive definite and monotonic increasing while Ky, (x) is monotonic
decreasing but never negative for non-zero real value of x, we have
lo(x) > 0, Ko(X) >0, x =0 (50)

I,(x)>0,K;(x) <0 (51)

Based on the inequalities (2.50) and (51), we get
Ko (X)

XL (K5 (9) _

o (X)K, (X)
By utilizing (2.52) for (48) as (U = 0), we see that

2
o

(5/p,R2)"

2
O

(5/p,R2)"
This means that the cylindrical hollow jet is capillary unstable only for small domain of wave number while it is
stable in all other domains.
From the view point of the inequality (53) the dispersion relation (47) reveals that both the magnetic fields
pervaded in the gas and liquid regions have stabilizing effects. The stabilizing effect of the magnetic field in the
gas region is valid for all short and long wavelengths. The analytical discussions indicate that the streaming has
strong destabilizing effect.
Here we seek very important task concerning the effect of the compressibility on the stability of the hollow jet
model which is in hand .

In the earlier studies of incompressible hollow jet by several authors (Chandrasekhar (1981), Drazin &
Reid (1980), Cheng (1985), Kendall (1986), Radwan (1991).... etc.) that give rise to the classical dispersion
relation presuppose that the fluid moves incompressible i.e., that the divergence of the fluid velocity vanishes.
that the compressibility has a stabilizing tendency. See also Chen (2003) and Shkadov& Sisoev (1996).

(52)

(53)

<0, as 1<x < (54)

>0, as 0< x<1 (55)

In reality the compressibility effects need careful treatment in each case of different models. Here we
found that the incompressible fluid results are obtained as a — oo (@ is sound speed in the fluid). However

for finite values of a (i.e. the fluid is compressible) it is expected that the growth rate values are larger than in
the case of incompressible fluid. The unstable region of a compressible fluid is much larger than that of an
incompressible fluid in the wave number domain of instability. This shows that, in our case of a hollow jet that
the compressibility has a strong destabilizing tendency for all ( short and long ) wavelengths.

Any how such discussion and results could be judged and identified via the numerical analysis of the general
dispersion relation (2.44) for different values of the different factors of the problem.

8 - Numerical Analysis
The dispersion relation (44) has been discussed numerically for all short and long wavelengths in which
the dimensionless wave number is taken to be

0 < x < 3 and the corresponding values of ¢ or ® in the normal unit 1/‘8/ pR03 ) where ( o/2r is the

frequency of oscillation ) are determined. This has been performed for various values of (HO/ HS) and o

Then for every couple values of ((HO/ Hs),a), different values of a is considered where

H, =S/ R,) .
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The numerical data are collected in tables, see tables (1) — (5) and presented in graphs, see figures (1) — (5).
There are many features of interest in these tables and figures.

Corresponding to ((H 0/ H, ),a) =(0, 0.1) as a=1,5,10,20 and 30; it is found that the unstable domains are

0<x<1.36928,0<x<1.133103, 0 < x <1.085419, 0 < x < 1.050069 and 0 < x < 1.04138 , while the
neighboring stable domains are given by 1.36928 < x < oo, 1.133103 < x <0, 1.085419< x <0, 1.050069 < x
<oo and 1.04138 < x <« . The critical points at which the transition from stable states to those of instability are
occurred at x.=1.36928,1.133103, 1.085419 , 1.050069 and 1.04138 respectively. See figure (1) and table (
1).

Corresponding to ((H 0/ H, ),a) =(0.1,1) as a=1,5,10,20 and 30; it is found that the unstable domains are

0<x<1353, 0<x<112614,0<x<1.07631, 0 <x < 1.04187 and 0 < x < 1.03322 , while the
neighboring stable domains are given by 1.353 < x <00, 1.12614 < X <0, 1.07631< X <0, 1.04187 <X < o0
and 1.03322 < x < o0 . The critical points at which the transition from stable states to those of instability are
occurred at x.=1.353, 1.12614 , 1.07631, 1.04187 and 1.03322 respectively. See figure (2) and table (2).

Corresponding to ((HO/ HS),a) = (0.3, 1) as a=1,5,10,20 and 30; it is found that the model at hand is

completely stable for all values of a for all short and long wavelengths. This means that the stabilizing effect of
the magnetic field is predominating the compressibility destabilizing influence, and there is no any unstable
state any more. See figure (3) and table (3).

Corresponding to ((H 0/ H, ),a) = (0.1, 2) as a= 1,5,10,20 and 30; it is found that the unstable domains are

givenby 0<x<1.84733, 0<x<1334,0<x<1.272,0<x<1.149 and 0<x < 1.1036 , while the
neighboring stable domains are given by 1.84733 <x <o, 1.334 <X <, 1.272< X< 0, 1.149 < X< and

1.1036 < x < o0 . The critical points at which the transition from stable states to those of instability are occurred
at x.=1.84733,1.334,1.272, 1.149 and 1.1036 respectively. See figure (4) and table (4).

Corresponding to ((HO/ H, ),a) =(0.1,3) as a=1,5,10,20 and 30; it is found tha the unstable domains are

0<x<26997, 0<x<1.75392,0<x<151354, 0 <x< 1336269 and 0 < x < 1.28833, while the
neighboring stable domains are given by 2.6997 < x <o, 1.75392 < X <0, 1.51354 < X < o0, 1.336269 < X <
oo and 1.28833 < x < o0 . The critical points at which the transition from stable states to those of instability are
occurred at x.=2.6997, 1.72392 , 1.51354 , 1.336269 and 1.28833 respectively. See figure (5) and table (5).

From the foregoing discussion we may conclude the following results.

1- The unstable domains are decreasing with increasing the values of compressibility parameter a. This means
that the analytic results show that the compressibility is stabilizing and verified numerically.

2- The magnetic field parameter o is stabilizing.

3- The magnetic field is strong stabilizing whatever its smallest value.

4- The capillary force destabilizing effect may be suppressed by the stabilizing effect of the magnetic field and
compressibility, and moreover stability exists.

11.9 Conclusions

The hydromagnetic instability of compressible hollow jet involved with surface tension is discussed in the
axisymmetric mode for all short and long wavelengths. The dispersion relation is derived and discussed
analytically and numerically. The axial magnetic fields inside the gas and liquid regions have stabilizing effects
for all short and long wavelengths. This is physically interpreted that the axial field exerts a strong effect which
causes the bending and twisting of the magnetic lines of force. The compressibility effects need careful treating.
Here the incompressible fluid result is obtained asa tends to o« (@ is the sound speed in the fluid). For finite
value of a (i.e. compressible fluid), the temporal amplification is larger than that in the incompressible case. So
the compressibility has a strong destabilizing tendency and increase the unstable domains. The streaming is
destabilizing for all short and long wavelengths. The capillary force is destabilizing for small wave numbers
while it is stabilizing for all the rest wavelengths. Whatever the stabilizing effect of the electromagnetic force is
strong enough, the capillary, streaming and compressible instability could not be suppressed and the model will
be always unstabl
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Values of the temporal amplification ¢* (or the oscillation frequency ®*) for Ho/ Hs =0.1, & = 1.

IJSER © 2014
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a 1 | 5 10 | 20 30
o

0.1 0.044306 0.066265 0.084976 0.126554 0.201214

0.2 0.087892 0.13092 0.167511 0.247905 0.384195

0.3 013 0.192263 0.245102 0.358985 0.535677

0.4 0.169735 0.248495 0.315062 0.454929 0.649015

0.5 0.206785 0.297595 0.37444 0.53099 0.722378

0.6 0.239604 0.337165 0.41975 0.582271 0.755831

0.7 0.267301 0.364184 0.446598 0.602968 0.748438

0.8 0.289524 0.3745 0.448642 0.584748 0.695334

0.9 0.301529 0.361497 0.415143 0.511877 0.581421

1 0.303891 0.312261 0.320587 0.336659 0.347728

©*
11 0.291853 0.183633 0.13245 0.336192 0.413774
©*
12 0.258438 0.261044 0.445926 0.651673 0.736311
13 0.185329 0.464747 0.671841 0.910042 0.998151
©*

14 0.12339 0.646598 0.886071 1.152957 1.240371

15 0.291952 0.826442 1.099945 1.390446 1.474449

16 0.423332 1.009733 1317232 1.626416 1.705356

17 0.548571 1.198649 1539425 1.862726 1.935691

18 0.674062 1.394177 1767119 2.10039 2.166979

19 0.802303 1596778 2.000487 2.340015 2.400175

2 0.937195 1.806632 2.2395 2.581993 2.635893

21 1.071415 2.023769 2484017 2.826595 2.874559

2.2 1213371 2.248121 2.733847 3.074022 3.116456

23 1.360654 2479573 2.988774 3.324425 3.36177

24 1513433 2.717966 3.248584 3.577932 3.610665

25 1.671816 2.963123 3.513047 3.834619 3.863211

2.6 1.835879 3.214856 3.781984 4.094582 4.119466

2.7 2.005659 3.472967 4.055194 4.357866 4.379475

2.8 2.181185 3.737245 4.332505 4.624532 4.643242

29 2.362473 4.007493 4.613762 4.89463 4.910774

3 2.54952 4.283527 4.898826 5.168162 5.182075

Xc 1.36928 1133103 1.085419 1.050069 1.04138

Table (1)
Values of the temporal amplification ¢* (or the oscillation frequency ®*) for Ho/ Hs = 0.0, 0. = 0.1.
a 1 5 10 20 30
X 6*
0.1 0.044045 0.065803 0.084321 0.125539 0.199549
0.2 0.087464 0.13 0.166259 0.245892 0.380959
0.3 0.129383 0.190893 0.243175 0.355921 0.530952
0.4 0.169086 0.246617 0.31241 0.450766 0.642853
0.5 0.205694 0.295161 0.370985 0.525623 0.714794
0.6 0.238265 0.334081 0.415367 0.575517 0.746693
0.7 0.265669 0.360319 0.441044 0.594508 0.737435
0.8 0.286557 0.369594 0.44152 0.573925 0.681689
0.9 0.299149 0.355092 0.405512 0.496991 0.563028
1 0.300965 0.303101 0.30527 0.309564 0.312615
w*
11 0.288167 0.164165 0.170068 0.364678 0.443182
w*
12 0.253476 0.275928 0.460576 0.66864 0.75452
13 0.177116 0.474647 0.683096 0.923553 1.012591
w*
14 0.136638 0.654813 0.895779 1.164646 1.252749
15 0.298647 0.833775 1.108738 1.400968 1.485486
16 0.428602 1.016504 1.325398 1.63609 1715401
17 0.553173 1.205027 1547123 1.871751 1.945024
18 0.678233 1.400264 1.774455 2.108886 2175721
19 0.806226 1.602623 2.007528 2.348084 2.408429
2 0.938243 1.812308 2.246293 2.589693 2.643738
21 1.074988 2.029286 2.490594 2.833976 2.882053
2.2 1.21684 2.253513 2.740234 3.081087 3.123644
23 1.364001 2.484848 2.994991 3.331276 3.368694
24 1516707 2.723142 3.254643 3.58455 3.617347
25 1.675052 2.968208 3.518977 3.841042 3.869625
2.6 1.839049 3.21986 3.787783 4.100817 4.125736
2.7 2.008781 3.477887 4.060874 4.363932 4.385567
2.8 2.184262 3.742098 4.338064 4.630443 4.649172
29 2.365523 4.012281 4.619221 4.900388 4.916554
3 2.552548 4.288251 4.904182 5.17379 5.187991
Xc 1.35300 1.12614 1.07631 1.04187 1.03322
Table (2)
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Values of the temporal amplification ¢* (or the oscillation frequency ®*) for Ho/ Hs = 0.1, a. = 2.
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a 1 | 5 10 20 | 30

X »*
0.1 0.302704 0.308794 0.315737 0.336419 0.388201
0.2 0.605302 0.617237 0.630793 0.670559 0.763643
0.3 0.907695 0.925095 0.944495 1.00035 1.118168
0.4 1.209773 1.231666 1.256185 1.324047 1.449655
0.5 151143 1536945 1565241 1.640366 1.760224
0.6 1.812567 1.840516 1.871096 1.948461 2.053801
0.7 2.113055 2.142032 21732 2.247986 2.334395
0.8 2412851 2441176 2471141 2.538838 2.605218
0.9 2.711789 2.737634 2.764435 2.821294 2.868606

1 3.009794 3.031117 3.052769 3.095721 3.126148
11 3.306751 3.32134 3.335821 3.362618 3.378846
12 3.602555 3.608047 3.613364 3.622513 3.627272
13 3.897114 3.890977 3.88519 3.875926 3.87177
14 4.190322 4.16988 4.151181 4.1233 4.11253
15 4.482053 4.444547 4411224 4.365066 4.349598
16 4.772232 4.714764 4.665276 4.601554 4.582979
17 5.060751 4.980341 4.913298 4.833084 4.81265
18 5.347495 5.241088 5.155298 5.059852 5.038561
19 5.632362 5.496845 5.391299 5.282045 5.260637

2 5.91526 5.74746 5.621343 5.499791 5.478814
21 6.196079 5.992796 5.845477 5.713178 5.693022
2.2 6.47472 6.232728 6.063769 5.922255 5.903186
23 6.751074 6.46714 6.276281 6.127055 6.109223
24 7.025048 6.695924 6.483078 6.327582 6.311085
25 7.296533 6.918996 6.684235 6.523826 6.508679
2.6 7.565421 7.136267 6.879797 6.715743 6.70194
2.7 7.831628 7.347666 7.069844 6.903311 6.881012
2.8 8.095036 7.553119 7.254412 7.086459 7.075168
29 8.355543 7.752567 7.433546 7.265143 7.255033

3 8.61306 7.948792 7.607286 7.439281 7.430249

Table (3)
Values of the oscillation frequency o* for Ho/ Hs =0.3 , 0. = 1.

a 1 | 5 10 20 | 30

X 6*
0.1 0.059582 0.077253 0.093691 0.132337 0.204494
0.2 0.118701 0.153118 0.185176 0.259715 0.391139
0.3 0.176761 0.226168 0.272195 0.377333 0.547083
0.4 0.233165 0.294907 0.352392 0.480645 0.666018
0.5 0.287367 0.357729 0.423261 0.565367 0.746586
0.6 0.338748 0.412832 0.48198 0.627256 0.789487
0.7 0.386639 0.458138 0.525205 0.661695 0.794921
0.8 0.430325 0.49108 0.548726 0.662741 0.760422
0.9 0.468967 0.50834 0.546553 0.620878 0.677547

1 0.501627 0.505183 0.508793 0.515946 0.521018
11 0.527171 0.473878 0.414005 0.269141 0.110091

©*
12 0.544197 0.398748 0.161648 0.450999 0.568168
©*
13 0.550908 0.224967 0.432643 0.753571 0.858914
©*

14 0.54494 0.329909 0.691788 1.013287 1.112425
15 0.522638 0.572678 0.92617 1.259087 1.35178
16 0.478059 0.78457 1.155076 1.499497 158514
17 0.399249 0.990252 1.384597 1738102 1.816387
18 0.248435 1.196746 1.617062 1.976821 2.04765

©*

19 0.262044 1.407018 1.853591 2214 2.280221
2 0.485994 1.622433 2.0947 2.458233 2514917
21 0.667428 1.843665 2.340528 2.702047 2.752283
2.2 0.837437 2071111 2.591092 2.948391 2.992686
23 1.004356 2.304897 2.846317 3.197499 3.236371
24 1171734 2.545036 3.106081 3.449536 3.483533
25 1341413 2.791469 3.370237 3.704646 3.734274
2.6 1514464 3.044142 3.63864 3.962928 3.988671
2.7 1.691567 3.302878 3.911138 4.224476 4.246775
2.8 1.873126 3.567548 4.187589 4.489343 4.508625
29 2.05949 3.837981 4.467852 4.757604 4.774233
3 2.250844 4.114013 4.751831 5.029274 5.04359

Xe
1.84733 1.334 1.272 1.149 1.10361
Table (4)
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a 1 5 10 | 20 30

X o*
0.1 0.086493 0.097468 0.11327 0.14757 0.216035
0.2 0.172624 0.198446 0.224718 0.290666 0.414934
03 0.258019 0.294968 0.332492 0.425006 0.584543
04 0.342301 0.388214 0434718 0.546681 0.719354
05 04251 0.477032 0.529501 0.652173 0.818933
06 0.506034 0.560205 0.614809 0.738336 0.885167
07 0.584671 0.636428 0.688518 0.802229 0.92012
08 0.660621 0.704294 0.748238 0.840797 0.924651
0.9 0.733417 0.762194 0.791221 0.850347 0.897437

1 0.802608 0.808295 0.81407 0.825524 0.833607
11 0.867692 0.840375 0.81225 0.757087 0.721412
12 0.928127 0.855652 0.779038 0.624944 0527257
o
13 0.983326 0.850382 0.702816 0.356403 0.191565
oF
14 1.032642 0.819151 055752 047244 0.654599
15 1.075346 0.753072 0.218518 0.815714 0.950053
oF
16 1.110603 0.63456 0.552024 1.097497 1210174
17 1.137462 0.410663 0.869299 1.358418 1.455974
o
18 1.154786 0.379579 1.146194 161013 1.69542
19 1.161189 0.738072 1.409677 1.857671 1.932403
2 1.154946 1.021088 1.668463 2.10364 2.169097
21 1.133821 1.283328 1.926372 2.34964 2.406829
22 1.094751 1538467 2.185328 2.596594 2.646466
23 1.033276 1.792097 2.446361 2.845177 2.88856
24 0.937497 2.046981 2.71005 3.09586 3.133508
25 0.808554 2.30463 2.976715 3.348985 3.381582
26 0.599667 2565913 3.246521 3.604802 3.63296
oF
2.7 0.01005 2.831334 3519574 3.863496 3.887789
28 0.656917 3.10118 3.795866 4125239 4146143
29 0.969897 3.375604 4075426 4.390137 4.408095
3 1.238556 3.654668 4.352126 4.658272 4.673682
Xo 2.6997 1.75392 151354 1.336269 1.28833
Table (5)

Values of the temporal amplification ¢* (or the oscillation frequency ©*) for Ho/ Hs =0.1, & = 3.

4
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Figure ( 1) : Relation between the growth rate of oscillation & and the dimensionless wavenumber x for

Ho/ Hi=0.1, a =1
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Figure ( 2) : Relation between the growth rate of oscillation ¢ and the dimensionless wavenumber x for
Ho/ He= 0.1, a=2, U
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Figure ( 3) : Relation between the growth rate of oscillation & and the dimensionless wavenumber x for
Ho/ He= 0.3, 0.1, a =1, U'=0.
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Figure (4) : Relation between the growth rate of oscillation ¢ and the dimensionless wavenumber x for
Ho/ Hs= 0.1, @ =2, U'=0.

Figure ( 5) : Relation between the growth rate of oscillation ¢ and the dimensionless wavenumber x for
Ho/ He= 0.1, 2 =3, U =0.
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