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         The hydromagnetic instability of compressible hollow jet endowed with surface tension is 
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U1- Introduction 

         The main prerogative of the present paper is to investigate the hydromagnetic stability of a streaming 

compressible hollow cylinder endowed with surface tension and acting upon its inertia and the electromagnetic 

forces. The stability and oscillation of full liquid jet endowed with surface tension or/and acted by 

electromagnetic force have been documented in several reported works based on the linear perturbation 

technique of small disturbance. See Rayleigh (1945) ,Lin (1976), Drazin and Reid (1980), Chandrasekhar 

(1981), Avital (1995) and Radwan (2004). The instability of hollow jet ( gas cylinder penetrated in a liquid ) 

acted by surface tension only is envised and studied for first time in the scientific province by Chandrasekhar ( 

for axisymmetric mode (m=0) , m is the azimuthally wave number)only . Also Drazin and Reid (1980) and 

Kendall (1986) gave an idea about such problem to be done mathematically for axisymmetric and non-

axisymmetric.In such work Channdrasekhar (1981), the inertia of the liquid is considered to be predominate 

over that of the gas and consequently the gas inertia force is neglected. Cheng (1985) elaborated the capillary 

stability of a streaming gas jet in a liquid, taking into account that the inertia of both incompressible gas and 

liquid. However one has to infer here that the result given longitudinal wavenumber and RR0R is the cylinder 

radius in the equilibrium state)  must be in the numerator as it is clear from Eq.(3) in Cheng (19 by Cheng 

(1985), in Eqs. (4) and (5), are incorrect in the third term. In fact the term ( )2221 oRkm −− ,(where m is the 

azimuthally wavenumber, k is the l85) . See also equations (2.45),(2.46) and (2.48) in the present work and 

Drazin & Reid P

'
Ps result (1980) p.16 and also Chandrasekhar P

'
Ps dispersion relation (1981) p.538 and p.540 ( Eqs. 

(147) and (155) there). Radwan (1991)  has examined the effect of a magnetic field on the capillary instability of 

an incompressible inviscid hollow jet. The stability of different cylindrical models under the action of self 

gravitating force in addition to other forces has been elaborated by Radwan and Hasan (2008) and (2009). They 

(2008) studied the gravitational stability of a fluid cylinder under transverse time-dependent electric field for 

axisymmetric perturbations. Hasan (2011) has discussed the stability of oscillating streaming fluid cylinder 

subject to combined effect of the capillary, self gravitating and electrodynamic forces for all axisymmetric and 
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non axisymmetric perturbation modes. He (2012) studied the magnetodynamic stability of a fluid jet pervaded 

by transverse varying magnetic field while its surrounding tenuous medium is penetrated by uniform magnetic 

field. 

                Here we extend the latter works by considering the liquid is compressible, which means that the 
velocity is not solenoid anymore and that the density is not constant. 
 

2- Formulation of the Problem 

We consider a hollow cylinder which is a gas cylinder pervaded into a liquid. In the initial state the gas cylinder 
is of  cross section of  radius R0 . The liquid is assumed to be non-viscous, perfectly conducting and 
compressible (i.e. its density ρ will not be constant) and pervaded by the uniform magnetic field 

( )00 ,0,0 HH = . The gas is pervaded by the uniform magnetic field ( )00 ,0,0 HH g α=  where H0 is the 
intensity of the magnetic field in the unperturbed state, while α is parameter satisfying certain restrictions. The 
components of the vector fields H0 and H0

g are considered along the cylindrical coordinates ( )zr ,,ϕ  system 
with the z-axis coinciding with the axis of the hollow cylinder model. Each of the gas and liquid is considered 
with constant magnetic permeability. 
3 - Basic  Equations 
         The basic equations concerning MHD study of compressible fluid 

( ) ( ) HHPuu
t
u

∧∧∇+−∇=





 ∇⋅+
∂
∂ µρ                                                 (1) 

( ) 0=⋅∇+
∂
∂ u

t
ρρ

                                                   (2) 

( ) ( )uPTu
t
TCv ⋅∇−=






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∂
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γρKP =                                                    (4) 

0. =∇ H                                                               (5) 

( ) ( ) ( ) ( )HuuHuHHu
t
H

∇⋅−⋅∇−∇⋅=∧∧∇=
∂
∂

                                              (6) 

In the gas region 

0=⋅∇ gasH                                                     (7) 

0=∧∇ gasH                                                  (8) 
Along the gas-liquid interface, the  surface  pressure  due  to  the  capillary  force  is  given by  

( )NSPs .∇=                                                  (9) 
with 
 1

2
1

1. −− +=∇ rrN                                                 (10) 
Here u and P are the liquid velocity and kinetic pressure, H is the magnetic field intensity, T is the temperature 
of the liquid, Cv is the specific heat of constant volume, γ(= (Cp/Cv)) is the ratio of specific heats of the liquid, S 
is the surface tension coefficient, while r1 and r2 are the principle radii of curvature. N is,  a  unit  vector  
outward  normal  to  the  performed   interface f(r,0, z, t) = 0, given by 

( ) ( )tzrftzrfN ,,0,,,0, ∇∇=                                     (11) 
Equation (1) is the equation of motion of the liquid, equation (2)   is the continuity equation of the liquid in the 
case of the compressible fluid, equation (3) is the conservation of energy equation, equation (4) is the 
polytrophic equation of state valid only for compressible fluids, equation (5) is Gauss's law of the magnetic field 
and this equation is identically satisfied, equation (6) is the evaluation equation of the magnetic field in the 
liquid region, equation (7) is Gauss's law of the magnetic field in the gas region, and equation (8) is the equation 
of conservation of flux in gas region where there  is no current.  
 
4 - Unperturbed  State 
         In the unperturbed state, we consider the liquid streams with the velocity 
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 u0 = (0, 0, U). The unperturbed state is studied and consequently the kinetic pressure of the liquid is  given  by  

( ) gasP
H

R
SP 0

2
2
0

2
0

0 1
2

+−+−= α
µ

                                   (12) 

In the absence of the capillary force effect (S = 0),  the  pressure P0 is  positive as  long  as  
 (α > 1). However the model will collapse as (α = 1) if gP0 > ( )2

0RS .   Also if we neglect the surface tension 

effect, so gP0  must be greater than ( )2
0RS  to avoid the collapsing of the model. 

 
 
 
5 - Linearization 
         We assume a small disturbance along the gas-liquid interface, then for small departure from the 
unperturbed state, every physical quantity χ(r,φ, z, t) may be expressed, see Radwan (2004) and (1996) as 
( ) ( ) ( )zrtrtzr ,0,)(,,, 0 χεχϕχ +=                                   (13) 

where the subscript zero characterizes quantities in the initial state while those with the index unity are their 
increments. Here χ stands for ρ, P, u, H, Hgas, N and the radical distance of the gas cylinder. The amplitude of 
the perturbation ε(t) is given by 
( ) ( )tt σεε exp0=                                                (14) 

where σ is the growth rate of instability or rather the oscillation frequency if σ( = i ω with i = (-1)½ the 
imaginary factor) is imaginary. 
         Consider an axisymmetric sinusoidal propagating wave along the gas-liquid interface. For a single Fourier 
term and based on the linearized perturbation technique, the perturbed radial distance of the gas cylinder is 
being 

100 RRr ε+=                                                                                                                    (15) 
with 

( )tikzR σ+= exp1                                                 (16) 
The second term in the right side of equation (2.15) represents the elevation of the surface wave measured from 
the unperturbed position with k is the longitudinal wave number. 
       Based on the foregoing expansions, the relevant perturbation equations are given by: 

( ) ( ) 110
0

10
1 ∏−∇=∇⋅−∇⋅+
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∂ HHuu

t
u

ρ
µ

                       (17) 

( ) ( ) ( ) ( ) ( )01101001101 HuuHHuHuuHH ⋅∇+⋅∇−∇⋅−∇⋅−∇⋅=σ                    (18) 
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01 =⋅∇ gasH                                      (22) 

0^ 1 =∇ gasH                                                                                                                       (23) 
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1 z

RRR
R
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where 

( )1110 2
HHP ⋅+=∏

µρ                                   (25) 

is the total magnetohydrodynamic pressure which is the sum of the perturbed kinetic pressure P1 of the liquid 
and the magnetodynamic pressure (µ/2) (H.H)1, due to electromagnetic acting force. While a  is the speed of 
sound in the compressible liquid defined by: 

( )2
1

00 ργPa =                                    (26) 
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By combining equations (2.20) and (2.21), we get 
( ) ( )1

2
01 uaPikU ⋅∇−=+ ρσ   

         In view of the time-space dependence and according to the linear perturbation technique used for solving 
the stability problems of cylindrical models (cf. Chandrasekhar (1980)and Radwan (2005)), every fluctuating 
quantity χ1 (r,0,z, t) in the axisymmetric perturbation could be expressed as 

( ) ( ) ( )ikztrtzr += σχεϕχ exp,,, *
101                                  (27)  

 
By the use of the expansion (27), the perturbed equations (17)-(24) are solved and the perturbed quantities u1, 
P1, ρ1, H1, H1

g, T are identified. These variables contain constants due to integration. Such constants may be 
determined upon applying appropriate boundary conditions. 
       Under the present circumstances, these boundary conditions are given as follows. 
(i) The normal component ur of the velocity vector u must be compatible with the velocity of the perturbed gas-
liquid boundary across the interface (15) at r = R0.  
This condition yields 

( ) 10
1

1 Ru
t

Ru r ∇⋅+
∂
∂

=                           (28) 

(ii)  The jump of the normal component of the magnetic field vanishes across the liquid-gas interface at r = R0. 
This condition reads 

N. < H > = 0                           (29) 
Up to first order, the condition (29) gives 

N0. < H1 > + N1 . < H0 > = 0                                    (30) 
with  

liquidgas HHH −=〉〈                           (31) 

)0,0,1(0 =N                            (32) 

( ) ( )ikztikN +−= σexp,0,01                                                (33) 
(iii) The balance of the normal component of the total stress tensor across the gas-liquid interface at (r = Ro) is 
being 
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                                                                                                                                       (34) 
Consequently, after lengthy  calculations, we obtain the following. 
The total MHD pressure  

( ) ( )( ) ( ) 10
22

0
1

1 RrKikU
yK A ησ

η ι Ω++−=∏                           (35) 

The magnetic field in the liquid region 

( ) 212
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0
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The velocity components of the liquid   
( )

( )( ) rikU
ikUu

A
r ∂
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221 σ
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The magnetic field in the gas region  

( )10
0

0
1 )(

)(
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The curvature pressure along the gas-liquid interface  
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with  
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Here x (= k Ro) is the ordinary longitudinal dimensionless wave number, y(= η Ro) the compressible 
longitudinal dimensionless wave number (where η→ k as a  → ∞), I0 and K0 are the modified Bessel functions 

of the first and second kind of order zero, and ( ) 2
1

0
22

0 ρµ kHA =Ω  is Alfven wave frequency defined in 
terms of H0. 
         By resorting to the foregoing solutions (12) and (35)–(43) of the basic equations in the unperturbed and 
perturbed states for compressibility condition (2.34), the following stability criterion is obtained  
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6 - Discussion  and  Limiting  Cases 
         The dispersion relation (44) is valid for discussing the MHD  stability of compressible hollow jet endowed 
with surface tension and acted by inertia and electromagnetic forces. This relation related the growth rate σ with 
the wave numbers x and y; the modified Bessel functions I0 and K0 of the first and second kinds of order zero 
and their derivatives, the parameters ρ0, R0, H0, µ and S of\the problem and with the fundamental quantities 

( )2
1

22
oo HR µρ  and ( )2

1
3 SRooρ  as a unit of time. 

         The relation (44) is a general relation from which we may recover other reported works as limiting cases. 
       For an ideal hollow jet endowed with surface  tension  (Ho = 0 and a  → ∞)   at  rest   initially  ( U=0 ), we 
have  

( ) ( ) ( )xKxK
xK
xxKx

R
S

ooo
10

12
3

2 ,
)(
)(1 −=−

−
= ι

ιρ
σ                                 (45) 

This relation has been given by Chandrasekhar (1981) for axisymmetric perturbation 
       If we assume that the fluid is incompressible ( a  → ∞) and initially the fluid is at rest  
(U = 0), the dispersion relation (44), yields 
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This is the magnetohydrodynamic dispersion relation of a hollow jet subjected by the capillary and MHD forces 
derived and documented by Radwan (1994). 
       The magnetodynamic dispersion relation of a streaming compressible hollow jet may obtained from 
equation (44), by just supposing (S = 0), in the form  
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ι
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       The dispersion relation of a streaming compressible hollow jet subjected by the capillary force could be 
obtained from (44) as (Ho=0), in the form    
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which is valid for all short and long wavelength. 
 7- Discussion and Results  
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         In order to investigate the instability and oscillation of the present model we have to write down about the 
characteristic and behaviour of the modified Bessel functions. 
The recurrence relations of the modified Bessel functions(cf. Abramowitz and Stegun (1970))  are given by 

)()()(2 11 xFxFxF mmm +− +=ι                          (49) 
 
where )(xFm

ι  stands for )(xI m
ι   and )(xK m

ι−   while Fm(x) stands for Im(x) and Km(x). By the use of 
relations (2.49) and the fact that Im(x) is positive definite and monotonic increasing while Km(x) is monotonic 
decreasing but never negative for non-zero real value of x, we have  
I0(x) > 0, K0(x) > 0, x ≠ 0                             (50) 

0)(,0)( 00 <> xKxI ιι                                                    (51) 
Based on the inequalities (2.50) and (51), we get  

 0
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By utilizing (2.52) for (48)  as (U = 0), we see that  

( )
0

/ 2
13

2

≤
oo RS ρ

σ
,               as  1 ≤ x  < ∞                           (54) 

( )
0

/ 2
13

2

>
oo RS ρ

σ
,              as    0 <  x < 1                          (55) 

This means that the cylindrical hollow jet is capillary unstable only for small domain of wave number while it is 
stable in all other domains. 
From the view point of the inequality (53) the dispersion relation (47) reveals that both the magnetic fields 
pervaded in the gas and liquid regions have stabilizing effects. The stabilizing effect of the magnetic field in the 
gas region is valid for all short and long wavelengths. The analytical discussions indicate that the streaming has 
strong destabilizing effect. 
 Here we seek very important task concerning the effect of the compressibility on the stability of the hollow jet 
model which is in hand . 
        In the earlier studies of incompressible hollow jet by several authors (Chandrasekhar (1981), Drazin & 
Reid (1980), Cheng (1985), Kendall (1986), Radwan (1991)…. etc.) that give rise to the classical dispersion 
relation presuppose that the fluid moves incompressible i.e., that the divergence of the fluid velocity vanishes. 
that the compressibility has a stabilizing tendency. See also Chen (2003) and Shkadov& Sisoev (1996). 
  
         In reality the compressibility effects need careful treatment in each case of different models. Here we 
found that the incompressible fluid results are obtained as a → ∞ ( a  is sound speed in the fluid). However 

for finite values of a  (i.e. the fluid is compressible) it is expected that the growth rate values are larger than in 
the case of incompressible fluid. The unstable region of a compressible fluid is much larger than that of an 
incompressible fluid in the wave number domain of instability. This shows that, in our case of a hollow jet that 
the compressibility has a strong destabilizing tendency for all ( short and long ) wavelengths. 
Any how such discussion and results could be judged and identified via the numerical analysis of the general 
dispersion relation (2.44) for different values of the different factors of the problem. 
 
 8 - Numerical Analysis 
         The dispersion relation (44) has been discussed numerically for all short and long wavelengths in which 
the dimensionless wave number is taken to be 

 0 < x ≤ 3 and the corresponding values of σ or ω in the normal unit ( )3
0RS ρ   where ( ω/2π is the 

frequency of oscillation ) are determined. This has been performed for various values of ( )sHH 0  and α. 

Then for every couple values of ( ( )sHH 0 ,α), different values of a  is considered where 

( )0RSH s µ=  . 
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The numerical data are collected in tables, see tables  (1)  (5)  and presented in graphs,  see figures  (1)  (5). 
There are many features of interest in these tables and figures. 
 
Corresponding to  ( ( )sHH 0 ,α) = (0, 0.1) as a = 1,5,10,20 and 30; it is found that the unstable domains are  
0 < x < 1.36928 , 0 < x < 1.133103 , 0 < x < 1.085419 , 0 < x < 1.050069  and  0 < x < 1.04138 , while the 
neighboring stable domains are given by  1.36928 < x < ∞ ,  1.133103 < x < ∞ , 1.085419< x < ∞ , 1.050069 < x 
< ∞  and 1.04138 < x < ∞ . The critical points at which the transition from stable states to those of instability are 
occurred at  xc= 1.36928 , 1.133103 , 1.085419 , 1.050069 and 1.04138 respectively. See figure ( 1 ) and table ( 
1 ) .  
Corresponding to  ( ( )sHH 0 ,α) = (0.1, 1) as a = 1,5,10,20 and 30; it is found that the unstable domains are  
0 < x < 1.353 ,  0 < x < 1.12614 , 0 < x < 1.07631 , 0 < x < 1.04187  and  0 < x < 1.03322 , while the 
neighboring stable domains are given by  1.353 < x < ∞ ,  1.12614 < x < ∞ , 1.07631< x < ∞ , 1.04187 < x < ∞  
and 1.03322 < x < ∞ . The critical points at which the transition from stable states to those of instability are 
occurred at  xc= 1.353 , 1.12614 , 1.07631 , 1.04187 and 1.03322 respectively. See figure  (2) and table  ( 2 ). 
 
Corresponding to  ( ( )sHH 0 ,α) = (0.3, 1) as a = 1,5,10,20 and 30; it is found that the model at hand is 
completely stable for all values of a for all short and long wavelengths. This means that the stabilizing effect of 
the magnetic field is predominating the compressibility destabilizing influence, and there is no any unstable 
state any more. See figure (3) and table (3). 
 Corresponding to  ( ( )sHH 0 ,α) = (0.1, 2) as a= 1,5,10,20 and 30; it is found that the unstable domains are 
given by   0 < x < 1.84733 ,  0 < x < 1.334 , 0 < x < 1.272 , 0 < x < 1.149  and  0 < x < 1.1036 , while the 
neighboring stable domains are given by  1.84733 < x < ∞ ,  1.334 < x < ∞ , 1.272< x < ∞ , 1.149 < x < ∞  and 
1.1036 < x < ∞ . The critical points at which the transition from stable states to those of instability are occurred 
at  xc= 1.84733 , 1.334 , 1.272 , 1.149 and 1.1036 respectively. See figure  (4) and table  (4). 
 Corresponding to  ( ( )sHH 0 ,α) = (0.1, 3) as a = 1,5,10,20 and 30; it is found tha the unstable domains are  
0 < x < 2.6997 ,  0 < x < 1.75392 , 0 < x < 1.51354 , 0 < x < 1.336269 and  0 < x < 1.28833 , while the 
neighboring stable domains are given by  2.6997 < x < ∞ ,  1.75392 < x <∞ , 1.51354 < x < ∞ , 1.336269 < x < 
∞  and 1.28833 < x < ∞ . The critical points at which the transition from stable states to those of instability are 
occurred at  xc= 2.6997, 1.72392 , 1.51354 , 1.336269 and 1.28833 respectively. See figure  (5) and table  (5). 
 
From the foregoing discussion we may conclude the following results. 
1- The unstable domains are decreasing with increasing the values of compressibility parameter a. This means 
that the analytic results show that the compressibility is stabilizing and verified numerically. 
2-  The magnetic field parameter α is stabilizing. 
3- The magnetic field is strong stabilizing whatever its smallest value. 
4- The capillary force destabilizing effect may be suppressed by the stabilizing effect of the magnetic field and 
compressibility, and moreover stability exists. 
 
II.9   Conclusions 
         The hydromagnetic instability of compressible hollow jet involved with surface tension is discussed in the 
axisymmetric mode for all short and long wavelengths. The dispersion relation is derived and discussed 
analytically and numerically. The axial magnetic fields inside the gas and liquid regions have stabilizing effects 
for all short and long wavelengths. This is physically interpreted that the axial field exerts a strong effect which 
causes the bending and twisting of the magnetic lines of force. The compressibility effects need careful treating. 
Here the incompressible fluid result is obtained as a  tends to ∞ ( a is the sound speed in the fluid). For finite 
value of a  (i.e. compressible fluid), the temporal amplification is larger than that in the incompressible case. So 
the compressibility has a strong destabilizing tendency and increase the unstable domains. The streaming is 
destabilizing for all short and long wavelengths. The capillary force is destabilizing for small wave numbers 
while it is stabilizing for all the rest wavelengths. Whatever the stabilizing effect of the electromagnetic force is 
strong enough, the capillary, streaming and compressible instability could not be suppressed and the model will 
be always unstabl 
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Table (1) 

Values of the temporal amplification σ* (or the oscillation    frequency ω*)  for Ho/ Hs = 0.0, α = 0.1. 
 

 
a 
x 

1 5 10 20 30 
σ* 

0.1 0.044045 0.065803 0.084321 0.125539 0.199549 
0.2 0.087464 0.13 0.166259 0.245892 0.380959 
0.3 0.129383 0.190893 0.243175 0.355921 0.530952 
0.4 0.169086 0.246617 0.31241 0.450766 0.642853 
0.5 0.205694 0.295161 0.370985 0.525623 0.714794 
0.6 0.238265 0.334081 0.415367 0.575517 0.746693 
0.7 0.265669 0.360319 0.441044 0.594508 0.737435 
0.8 0.286557 0.369594 0.44152 0.573925 0.681689 
0.9 0.299149 0.355092 0.405512 0.496991 0.563028 
1 0.300965 0.303101 0.30527 0.309564 0.312615 
   ω* 

1.1 0.288167 0.164165 0.170068 0.364678 0.443182 
  ω*    

1.2 0.253476 0.275928 0.460576 0.66864 0.75452 
1.3 0.177116 0.474647 0.683096 0.923553 1.012591 

 ω*     
1.4 0.136638 0.654813 0.895779 1.164646 1.252749 
1.5 0.298647 0.833775 1.108738 1.400968 1.485486 
1.6 0.428602 1.016504 1.325398 1.63609 1.715401 
1.7 0.553173 1.205027 1.547123 1.871751 1.945024 
1.8 0.678233 1.400264 1.774455 2.108886 2.175721 
1.9 0.806226 1.602623 2.007528 2.348084 2.408429 
2 0.938243 1.812308 2.246293 2.589693 2.643738 

2.1 1.074988 2.029286 2.490594 2.833976 2.882053 
2.2 1.21684 2.253513 2.740234 3.081087 3.123644 
2.3 1.364001 2.484848 2.994991 3.331276 3.368694 
2.4 1.516707 2.723142 3.254643 3.58455 3.617347 
2.5 1.675052 2.968208 3.518977 3.841042 3.869625 
2.6 1.839049 3.21986 3.787783 4.100817 4.125736 
2.7 2.008781 3.477887 4.060874 4.363932 4.385567 
2.8 2.184262 3.742098 4.338064 4.630443 4.649172 
2.9 2.365523 4.012281 4.619221 4.900388 4.916554 
3 2.552548 4.288251 4.904182 5.17379 5.187991 
xRc 1.35300 1.12614 1.07631 1.04187 1.03322 

 
 

Table (2) 
Values of the temporal amplification σ* (or the oscillation    frequency ω*) for Ho/ Hs = 0.1, α = 1. 

 
 
 
 
 
 
 
 
 
 

a 
x 

1 5 10 20 30 

σ* 

0.1 0.044306 0.066265 0.084976 0.126554 0.201214 
0.2 0.087892 0.13092 0.167511 0.247905 0.384195 
0.3 0.13 0.192263 0.245102 0.358985 0.535677 

0.4 0.169735 0.248495 0.315062 0.454929 0.649015 
0.5 0.206785 0.297595 0.37444 0.53099 0.722378 
0.6 0.239604 0.337165 0.41975 0.582271 0.755831 
0.7 0.267301 0.364184 0.446598 0.602968 0.748438 
0.8 0.289524 0.3745 0.448642 0.584748 0.695334 

0.9 0.301529 0.361497 0.415143 0.511877 0.581421 

1 0.303891 0.312261 0.320587 0.336659 0.347728 

   ω* 

1.1 0.291853 0.183633 0.13245 0.336192 0.413774 
  ω*    

1.2 0.258438 0.261044 0.445926 0.651673 0.736311 

1.3 0.185329 0.464747 0.671841 0.910042 0.998151 

 ω*     

1.4 0.12339 0.646598 0.886071 1.152957 1.240371 

1.5 0.291952 0.826442 1.099945 1.390446 1.474449 

1.6 0.423332 1.009733 1.317232 1.626416 1.705356 

1.7 0.548571 1.198649 1.539425 1.862726 1.935691 

1.8 0.674062 1.394177 1.767119 2.10039 2.166979 

1.9 0.802303 1.596778 2.000487 2.340015 2.400175 
2 0.937195 1.806632 2.2395 2.581993 2.635893 

2.1 1.071415 2.023769 2.484017 2.826595 2.874559 
2.2 1.213371 2.248121 2.733847 3.074022 3.116456 
2.3 1.360654 2.479573 2.988774 3.324425 3.36177 
2.4 1.513433 2.717966 3.248584 3.577932 3.610665 
2.5 1.671816 2.963123 3.513047 3.834619 3.863211 
2.6 1.835879 3.214856 3.781984 4.094582 4.119466 
2.7 2.005659 3.472967 4.055194 4.357866 4.379475 
2.8 2.181185 3.737245 4.332505 4.624532 4.643242 
2.9 2.362473 4.007493 4.613762 4.89463 4.910774 
3 2.54952 4.283527 4.898826 5.168162 5.182075 
xRc 1.36928 1.133103 1.085419 1.050069 1.04138 
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a 
x 

1 5 10 20 30 
ω* 

0.1 0.302704 0.308794 0.315737 0.336419 0.388201 
0.2 0.605302 0.617237 0.630793 0.670559 0.763643 
0.3 0.907695 0.925095 0.944495 1.00035 1.118168 
0.4 1.209773 1.231666 1.256185 1.324047 1.449655 
0.5 1.51143 1.536945 1.565241 1.640366 1.760224 
0.6 1.812567 1.840516 1.871096 1.948461 2.053801 
0.7 2.113055 2.142032 2.1732 2.247986 2.334395 
0.8 2.412851 2.441176 2.471141 2.538838 2.605218 
0.9 2.711789 2.737634 2.764435 2.821294 2.868606 
1 3.009794 3.031117 3.052769 3.095721 3.126148 

1.1 3.306751 3.32134 3.335821 3.362618 3.378846 
1.2 3.602555 3.608047 3.613364 3.622513 3.627272 
1.3 3.897114 3.890977 3.88519 3.875926 3.87177 
1.4 4.190322 4.16988 4.151181 4.1233 4.11253 
1.5 4.482053 4.444547 4.411224 4.365066 4.349598 
1.6 4.772232 4.714764 4.665276 4.601554 4.582979 
1.7 5.060751 4.980341 4.913298 4.833084 4.81265 
1.8 5.347495 5.241088 5.155298 5.059852 5.038561 
1.9 5.632362 5.496845 5.391299 5.282045 5.260637 
2 5.91526 5.74746 5.621343 5.499791 5.478814 

2.1 6.196079 5.992796 5.845477 5.713178 5.693022 
2.2 6.47472 6.232728 6.063769 5.922255 5.903186 
2.3 6.751074 6.46714 6.276281 6.127055 6.109223 
2.4 7.025048 6.695924 6.483078 6.327582 6.311085 
2.5 7.296533 6.918996 6.684235 6.523826 6.508679 
2.6 7.565421 7.136267 6.879797 6.715743 6.70194 
2.7 7.831628 7.347666 7.069844 6.903311 6.881012 
2.8 8.095036 7.553119 7.254412 7.086459 7.075168 
2.9 8.355543 7.752567 7.433546 7.265143 7.255033 
3 8.61306 7.948792 7.607286 7.439281 7.430249 

 
Table (3) 

Values of the oscillation frequency ω* for Ho/ Hs =0.3 , α = 1. 
 
 
 

a 
x 

1 5 10 20 30 
σ* 

0.1 0.059582 0.077253 0.093691 0.132337 0.204494 
0.2 0.118701 0.153118 0.185176 0.259715 0.391139 
0.3 0.176761 0.226168 0.272195 0.377333 0.547083 
0.4 0.233165 0.294907 0.352392 0.480645 0.666018 
0.5 0.287367 0.357729 0.423261 0.565367 0.746586 
0.6 0.338748 0.412832 0.48198 0.627256 0.789487 
0.7 0.386639 0.458138 0.525205 0.661695 0.794921 
0.8 0.430325 0.49108 0.548726 0.662741 0.760422 
0.9 0.468967 0.50834 0.546553 0.620878 0.677547 
1 0.501627 0.505183 0.508793 0.515946 0.521018 

1.1 0.527171 0.473878 0.414005 0.269141 0.110091 
    ω* 

1.2 0.544197 0.398748 0.161648 0.450999 0.568168 
   ω*   

1.3 0.550908 0.224967 0.432643 0.753571 0.858914 
  ω*    

1.4 0.54494 0.329909 0.691788 1.013287 1.112425 
1.5 0.522638 0.572678 0.92617 1.259087 1.35178 
1.6 0.478059 0.78457 1.155076 1.499497 1.58514 
1.7 0.399249 0.990252 1.384597 1.738102 1.816387 
1.8 0.248435 1.196746 1.617062 1.976821 2.04765 

 ω*     
1.9 0.262044 1.407018 1.853591 2.214 2.280221 
2 0.485994 1.622433 2.0947 2.458233 2.514917 

2.1 0.667428 1.843665 2.340528 2.702047 2.752283 
2.2 0.837437 2.071111 2.591092 2.948391 2.992686 
2.3 1.004356 2.304897 2.846317 3.197499 3.236371 
2.4 1.171734 2.545036 3.106081 3.449536 3.483533 
2.5 1.341413 2.791469 3.370237 3.704646 3.734274 
2.6 1.514464 3.044142 3.63864 3.962928 3.988671 
2.7 1.691567 3.302878 3.911138 4.224476 4.246775 
2.8 1.873126 3.567548 4.187589 4.489343 4.508625 
2.9 2.05949 3.837981 4.467852 4.757604 4.774233 
3 2.250844 4.114013 4.751831 5.029274 5.04359 
xc 

1.84733 1.334 1.272 1.149 1.10361 
 

 
Table (4) 

Values of the temporal amplification σ* (or the oscillation    frequency ω*) for Ho/ Hs = 0.1, α = 2. 
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a 
x 

1 5 10 20 30 
σ* 

0.1 0.086493 0.097468 0.11327 0.14757 0.216035 
0.2 0.172624 0.198446 0.224718 0.290666 0.414934 
0.3 0.258019 0.294968 0.332492 0.425006 0.584543 
0.4 0.342301 0.388214 0.434718 0.546681 0.719354 
0.5 0.4251 0.477032 0.529501 0.652173 0.818933 
0.6 0.506034 0.560205 0.614809 0.738336 0.885167 
0.7 0.584671 0.636428 0.688518 0.802229 0.92012 
0.8 0.660621 0.704294 0.748238 0.840797 0.924651 
0.9 0.733417 0.762194 0.791221 0.850347 0.897437 
1 0.802608 0.808295 0.81407 0.825524 0.833607 

1.1 0.867692 0.840375 0.81225 0.757087 0.721412 
1.2 0.928127 0.855652 0.779038 0.624944 0.527257 

     ω* 
1.3 0.983326 0.850382 0.702816 0.356403 0.191565 

    ω*  
1.4 1.032642 0.819151 0.55752 0.47244 0.654599 
1.5 1.075346 0.753072 0.218518 0.815714 0.950053 

   ω*   
1.6 1.110603 0.63456 0.552024 1.097497 1.210174 
1.7 1.137462 0.410663 0.869299 1.358418 1.455974 

  ω*    
1.8 1.154786 0.379579 1.146194 1.61013 1.69542 
1.9 1.161189 0.738072 1.409677 1.857671 1.932403 
2 1.154946 1.021088 1.668463 2.10364 2.169097 

2.1 1.133821 1.283328 1.926372 2.34964 2.406829 
2.2 1.094751 1.538467 2.185328 2.596594 2.646466 
2.3 1.033276 1.792097 2.446361 2.845177 2.88856 
2.4 0.937497 2.046981 2.71005 3.09586 3.133508 
2.5 0.808554 2.30463 2.976715 3.348985 3.381582 
2.6 0.599667 2.565913 3.246521 3.604802 3.63296 

 ω*     
2.7 0.01005 2.831334 3.519574 3.863496 3.887789 
2.8 0.656917 3.10118 3.795866 4.125239 4.146143 
2.9 0.969897 3.375604 4.075426 4.390137 4.408095 
3 1.238556 3.654668 4.352126 4.658272 4.673682 
xc 2.6997 1.75392 1.51354 1.336269 1.28833 

 
Table (5) 

Values of the temporal amplification σ* (or the oscillation    frequency ω*)  for Ho/ Hs = 0.1, α = 3. 
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Figure ( 1) : Relation between the growth rate of oscillation σ*

  and the dimensionless  wavenumber  x  for 
H0/ Hs= 0.1, α =1 
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Figure ( 2) : Relation between the growth rate of oscillation σ*
  and the dimensionless  wavenumber  x  for 

H0/ Hs=  0.1, α =2, U* 
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Figure ( 3) : Relation between the growth rate of oscillation σ*
  and the dimensionless  wavenumber  x  for 

H0/ Hs= 0.3, 0.1, α =1, U*=0. 
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Figure (4) : Relation between the growth rate of oscillation σ*

  and the dimensionless  wavenumber  x  for 
H0/ Hs= 0.1, α =2, U*=0. 
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 Figure ( 5) : Relation between the growth rate of oscillation σ*
  and the dimensionless  wavenumber  x  for 

H0/ Hs=  0.1, α =3, U*=0. 
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